CS106B Handout #01 Summer 2013 June 24, 2013

CS106B Syllabus

This handout contains the tentative syllabus for CS106B. Depending on how quickly we're able to make it through the material, we may end up spending more or less time on each of these topics. Readings should be done **before** the lecture for which they are assigned.

Date	Topics	Readings	Assignments	
M June 24	Why continue onward in programming? Course Overview The C++ Programming Language	Chapter 1		
T June 25	How can we define functions in terms of themselves? Functions in C++ Recursive Functions	Chapters 2 and 7		
W June 26	How can we process text recursively? Strings Recursion over Strings	Chapter 3	Assignment 1 Out	
Th June 27	How do computers parse expressions? Stack The Shunting-Yard Algorithm	Chapter 5.1 – 5.3		
M July 1	How do we store aggregate data? C++ Streams Vector	Chapter 4		
T July 2	How do we work with associative data? Map, Set, and Lexicon foreach	Chapter 6	Assignment 1 Due Assignment 2 Out	
w July 3	How do you safely store passwords? Queue Password Management	Chapter 5.4 – 5.6		
Th July 4	July 4th: No Class!			
M July 8	How can recursion aid in problem solving? Thinking Recursively	Chapters 7 and 8		
T July 9	What is a fractal? Graphical Recursion Exhaustive Search I	Chapter 9		
w July 10	How can we find all solutions to a problem? Exhaustive Search II Backtracking Search I		Assignment 2 Due Assignment 3 Out	
Th July 11	How can we explore a huge search space? Backtracking Search II			

M July 15	Why are some algorithms faster than others? Algorithmic Efficiency Big-O Notation	Chapter 10.1 – 10.2		
T July 16	How do computers sort data? Sorting Algorithms, Part I	Chapter 10.3 – 10.5		
w July 17	How does sorting theory match practice? Sorting Algorithms, Part II			
Th July 18	How do we define our own collection classes? Designing Abstractions Pointers	Chapter 11	Assignment 3 Due Assignment 4 Out	
M July 22	CS106B Midterm #1 7 – 10PM, Cubberly Auditorium			
T July 23	How are dynamic arrays implemented? Dynamic Allocation Implementing Stack	Chapter 12		
w July 24	How does data representation impact efficiency? Optimizing Stack			
Th July 25	Are arrays really necessary for storing linear data? Linked Lists I	Chapter 13		
M July 29	How are the stack and queue implemented? Linked Lists II Implementing Stack and Queue	Chapter 14	Assignment 4 Due Assignment 5 Out	
T July 30	How can we rapidly store and look up values? Hash Tables Implementing Map	Chapter 15		
w July 31	How can we efficiently store text data? Tries Implementing Lexicon			
Th Aug. 1	How can we efficiently store data in sorted order? Binary Search Trees Implementing Set	Chapter 16		
M Aug. 5	How do we explore network structures? Graphs Graph Searches	Chapter 18.1 – 18.4		
T Aug. 6	How can we minimize trip times and wiring costs? Graph Representations Graph Algorithms	Chapter 18.5 – 18.7	Assignment 6 Out	
w Aug. 7	How can we store a large file inside a smaller one? Huffman Encoding Greedy Algorithms		Assignment 5 Due	

Th Aug. 8	How can computers recognize groups of data? Dendrograms Hierarchical Clustering		
M Aug. 12	CS106B Midterm #2 7 – 10PM, Cubberly Auditorium		
T Aug. 13	Fun and exciting additional topics!		
W Aug. 14	What comes after CS106? Where to Go from Here		
Fri Aug. 16	Assignment 6 Due at 11:00AM No Late Submissions Accepted		